Bias correction through filtering omitted variables and instruments
Andrea Beccarini
Journal of Applied Statistics, 2016, vol. 43, issue 4, 754-766
Abstract:
This paper proposes a combination of the particle-filter-based method and the expectation-maximization algorithm (PFEM), in order to filter unobservable variables and hence, to reduce the omitted variables bias. Furthermore, I consider as an unobservable variable, an exogenous one that can be used as an instrument in the instrumental variable (IV) methodology. The aim is to show that the PFEM is able to eliminate or reduce both the omitted variable bias and the simultaneous equation bias by filtering the omitted variable and the unobserved instrument, respectively. In other words, the procedure provides (at least approximately) consistent estimates, without using additional information embedded in the omitted variable or in the instruments, since they are filtered by the observable variables. The validity of the procedure is shown both through simulations and through a comparison to an IV analysis which appeared in an important previous publication. As regards the latter point, I demonstrate that the procedure developed in this article yields similar results to those of the original IV analysis.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1077376 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:4:p:754-766
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1077376
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().