Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes
Bao Yiqi,
Cibele Maria Russo,
Vicente G. Cancho and
Francisco Louzada
Journal of Applied Statistics, 2016, vol. 43, issue 6, 1027-1060
Abstract:
In this paper, we propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest follows the Negative Binomial distribution and the time to event follows a Weibull distribution. Indeed, we introduce the Weibull-Negative-Binomial (WNB) distribution, which can be used in order to model survival data when the hazard rate function is increasing, decreasing and some non-monotonous shaped. Another advantage of the proposed model is that it has some distributions commonly used in lifetime analysis as particular cases. Moreover, the proposed model includes as special cases some of the well-know cure rate models discussed in the literature. We consider a frequentist analysis for parameter estimation of a WNB model with cure rate. Then, we derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. Finally, the methodology is illustrated on a medical data.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1089221 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:6:p:1027-1060
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1089221
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().