Multivariate generalized linear mixed models with random intercepts to analyze cardiovascular risk markers in type-1 diabetic patients
Miran A. Jaffa,
Mulugeta Gebregziabher,
Deirdre K. Luttrell,
Louis M. Luttrell and
Ayad A. Jaffa
Journal of Applied Statistics, 2016, vol. 43, issue 8, 1447-1464
Abstract:
Statistical approaches tailored to analyzing longitudinal data that have multiple outcomes with different distributions are scarce. This paucity is due to the non-availability of multivariate distributions that jointly model outcomes with different distributions other than the multivariate normal. A plethora of research has been done on the specific combination of binary-Gaussian bivariate outcomes but a more general approach that allows other mixtures of distributions for multiple longitudinal outcomes has not been thoroughly demonstrated and examined. Here, we study a multivariate generalized linear mixed models approach that jointly models multiple longitudinal outcomes with different combinations of distributions and incorporates the correlations between the various outcomes through separate yet correlated random intercepts. Every outcome is linked to the set of covariates through a proper link function that allows the incorporation and joint modeling of different distributions. A novel application was demonstrated on a cohort study of Type-1 diabetic patients to jointly model a mix of longitudinal cardiovascular outcomes and to explore for the first time the effect of glycemic control treatment, plasma prekallikrein biomarker, gender and age on cardiovascular risk factors collectively.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1103708 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:8:p:1447-1464
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1103708
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().