EconPapers    
Economics at your fingertips  
 

A new generalized weighted Weibull distribution with decreasing, increasing, upside-down bathtub, N-shape and M-shape hazard rate

Filippo Domma, Francesca Condino and Božidar V. Popović

Journal of Applied Statistics, 2017, vol. 44, issue 16, 2978-2993

Abstract: Recently, Domma et al. [An extension of Azzalinis method, J. Comput. Appl. Math. 278 (2015), pp. 37–47] proposed an extension of Azzalini's method. This method can attract readers due to its flexibility and ease of applicability. Most of the weighted Weibull models that have been introduced are with monotonic hazard rate function. This fact limits their applicability. So, our aim is to build a new weighted Weibull distribution with monotonic and non-monotonic hazard rate function. A new weighted Weibull distribution, so-called generalized weighted Weibull (GWW) distribution, is introduced by a method exposed in Domma et al. [13]. GWW distribution possesses decreasing, increasing, upside-down bathtub, N-shape and M-shape hazard rate. Also, it is very easy to derive statistical properties of the GWW distribution. Finally, we consider application of the GWW model on a real data set, providing simulation study too.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1267118 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:16:p:2978-2993

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1267118

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:16:p:2978-2993