Estimation and diagnostic for skew-normal partially linear models
Clécio S. Ferreira and
Gilberto A. Paula
Journal of Applied Statistics, 2017, vol. 44, issue 16, 3033-3053
Abstract:
Partially linear models (PLMs) are an important tool in modelling economic and biometric data and are considered as a flexible generalization of the linear model by including a nonparametric component of some covariate into the linear predictor. Usually, the error component is assumed to follow a normal distribution. However, the theory and application (through simulation or experimentation) often generate a great amount of data sets that are skewed. The objective of this paper is to extend the PLMs allowing the errors to follow a skew-normal distribution [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178], increasing the flexibility of the model. In particular, we develop the expectation-maximization (EM) algorithm for linear regression models and diagnostic analysis via local influence as well as generalized leverage, following [H. Zhu and S. Lee, Local influence for incomplete-data models, J. R. Stat. Soc. Ser. B 63 (2001), pp. 111–126]. A simulation study is also conducted to evaluate the efficiency of the EM algorithm. Finally, a suitable transformation is applied in a data set on ragweed pollen concentration in order to fit PLMs under asymmetric distributions. An illustrative comparison is performed between normal and skew-normal errors.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1267124 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:16:p:3033-3053
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1267124
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().