EconPapers    
Economics at your fingertips  
 

-distance and classification problem by Bayesian method

Tai Vovan

Journal of Applied Statistics, 2017, vol. 44, issue 3, 385-401

Abstract: In this article we suggest a definition for the notion of L1-distance that combines probability density functions and prior probabilities. We also obtain the upper and lower bounds for this distance as well as its relation to other measures. Besides, the relationship between the proposed distance and quantities involved in classification problem by Bayesian method will be established. In practice, calculations are performed by Matlab procedures. As an illustration for applications of the obtained results, the article gives here an estimation for the ability to repay bank debt of some companies in Can Tho City, Vietnam.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1174194 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:3:p:385-401

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1174194

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:3:p:385-401