EconPapers    
Economics at your fingertips  
 

Critical values improvement for the standard normal homogeneity test by combining Monte Carlo and regression approaches

Michele Rienzner and Francesca Ieva

Journal of Applied Statistics, 2017, vol. 44, issue 4, 602-619

Abstract: The distribution of the test statistics of homogeneity tests is often unknown, requiring the estimation of the critical values through Monte Carlo (MC) simulations. The computation of the critical values at low α, especially when the distribution of the statistics changes with the series length (sample cardinality), requires a considerable number of simulations to achieve a reasonable precision of the estimates (i.e. 106 simulations or more for each series length). If, in addition, the test requires a noteworthy computational effort, the estimation of the critical values may need unacceptably long runtimes.To overcome the problem, the paper proposes a regression-based refinement of an initial MC estimate of the critical values, also allowing an approximation of the achieved improvement. Moreover, the paper presents an application of the method to two tests: SNHT (standard normal homogeneity test, widely used in climatology), and SNH2T (a version of SNHT showing a squared numerical complexity). For both, the paper reports the critical values for α ranging between 0.1 and 0.0001 (useful for the p-value estimation), and the series length ranging from 10 (widely adopted size in climatological change-point detection literature) to 70,000 elements (nearly the length of a daily data time series 200 years long), estimated with coefficients of variation within 0.22%. For SNHT, a comparison of our results with approximated, theoretically derived, critical values is also performed; we suggest adopting those values for the series exceeding 70,000 elements.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1182127 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:4:p:602-619

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2016.1182127

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:44:y:2017:i:4:p:602-619