Correlated random effects regression analysis for a log-normally distributed variable
Rabindra Nath Das and
Anis Chandra Mukhopadhyay
Journal of Applied Statistics, 2017, vol. 44, issue 5, 897-915
Abstract:
In regression analysis, it is assumed that the response (or dependent variable) distribution is Normal, and errors are homoscedastic and uncorrelated. However, in practice, these assumptions are rarely satisfied by a real data set. To stabilize the heteroscedastic response variance, generally, log-transformation is suggested. Consequently, the response variable distribution approaches nearer to the Normal distribution. As a result, the model fit of the data is improved. Practically, a proper (seems to be suitable) transformation may not always stabilize the variance, and the response distribution may not reduce to Normal distribution. The present article assumes that the response distribution is log-normal with compound autocorrelated errors. Under these situations, estimation and testing of hypotheses regarding regression parameters have been derived. From a set of reduced data, we have derived the best linear unbiased estimators of all the regression coefficients, except the intercept which is often unimportant in practice. Unknown correlation parameters have been estimated. In this connection, we have derived a test rule for testing any set of linear hypotheses of the unknown regression coefficients. In addition, we have developed the confidence ellipsoids of a set of estimable functions of regression coefficients. For the fitted regression equation, an index of fit has been proposed. A simulated study illustrates the results derived in this report.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1189518 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:5:p:897-915
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1189518
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().