Estimation of common location parameter of several heterogeneous exponential populations based on generalized order statistics
Qazi J. Azhad,
Mohd. Arshad and
Amit Kumar Misra
Journal of Applied Statistics, 2021, vol. 48, issue 10, 1798-1815
Abstract:
In this article, several independent populations following exponential distribution with common location parameter and unknown and unequal scale parameters are considered. From these populations, several independent samples of generalized order statistics (gos) are drawn. Under the setup of gos, the problem of estimation of common location parameter is discussed and various estimators of common location parameter are derived. The authors obtained maximum likelihood estimator (MLE), modified MLE and uniformly minimum variance unbiased estimator of common location parameter. Furthermore, under scaled-squared error loss function, a general inadmissibility result of invariant estimator is proposed. The derived results are further reduced for upper record values which is a special case of gos. Finally, simulation study and real life example are reported to show the performances of various competing estimators in terms of percentage risk improvement.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1777395 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:10:p:1798-1815
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1777395
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().