EWMA and DEWMA repetitive control charts under non-normal processes
Muhammad Shujaat Nawaz,
Muhammad Azam and
Muhammad Aslam
Journal of Applied Statistics, 2021, vol. 48, issue 1, 4-40
Abstract:
In this paper, we present a repetitive sampling method to construct control charts using exponentially weighted moving averages (EWMA) and double exponentially weighted moving averages (DEWMA) to monitor shift in the process. For non-normal processes, t-distribution with various degrees of freedom (i.e. $\textrm{df} = 4, 10, 20, 40, 50 $df=4,10,20,40,50) is used as symmetric distribution, gamma distribution with unit scale parameter and various shape parameters (i.e. $0.5, 1, 2, 3, 4 $0.5,1,2,3,4) is used as positively skewed distribution and Weibull distribution with unit scale parameter and various shape parameters (i.e. 10 and 20) is used as negatively skewed distribution. We use Monte Carlo simulations to check whether the process is out of control. We use average run length as a tool to find the ability of proposed control charts to identify a shift earlier in a process, as compared to other control charts currently used to monitor the same type of process. The proposed control charts are applied to two real datasets.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2019.1709809 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:1:p:4-40
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2019.1709809
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().