Monitoring of zero-inflated binomial processes with a DEWMA control chart
Vasileios Alevizakos and
Christos Koukouvinos
Journal of Applied Statistics, 2021, vol. 48, issue 7, 1319-1338
Abstract:
Control charts are widely used for monitoring quality characteristics of high-yield processes. In such processes where a large number of zero observations exists in count data, the zero-inflated binomial (ZIB) models are more appropriate than the ordinary binomial models. In ZIB models, random shocks occur with probability θ, and upon the occurrence of random shocks, the number of non-conforming items in a sample of size n follows the binomial distribution with proportion p. In the present article, we study in more detail the exponentially weighted moving average control chart based on ZIB distribution (ZIB-EWMA) and we also propose a new control chart based on the double exponentially weighted moving average statistic for monitoring ZIB data (ZIB-DEWMA). The two control charts are studied in detecting upward shifts in θ or p individually, as well as in both parameters simultaneously. Through a simulation study, we compare the performance of the proposed chart with the ZIB-Shewhart, ZIB-EWMA and ZIB-CUSUM charts. Finally, an illustrative example is also presented to display the practical application of the ZIB charts.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1761950 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:7:p:1319-1338
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1761950
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().