A generalized likelihood ratio test for monitoring profile data
Yang Liu,
JunJia Zhu and
Dennis K. J. Lin
Journal of Applied Statistics, 2021, vol. 48, issue 8, 1402-1415
Abstract:
Profile data emerges when the quality of a product or process is characterized by a functional relationship among (input and output) variables. In this paper, we focus on the case where each profile has one response variable Y, one explanatory variable x, and the functional relationship between these two variables can be rather arbitrary. The basic concept can be applied to a much wider case, however. We propose a general method based on the Generalized Likelihood Ratio Test (GLRT) for monitoring of profile data. The proposed method uses nonparametric regression to estimate the on-line profiles and thus does not require any functional form for the profiles. Both Shewhart-type and EWMA-type control charts are considered. The average run length (ARL) performance of the proposed method is studied. It is shown that the proposed GLRT-based control chart can efficiently detect both location and dispersion shifts of the on-line profiles from the baseline profile. An upper control limit (UCL) corresponding to a desired in-control ARL value is constructed.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1880555 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:8:p:1402-1415
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2021.1880555
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().