Bayesian analysis of the Box-Cox transformation model based on left-truncated and right-censored data
Chunjie Wang,
Jingjing Jiang,
Linlin Luo and
Shuying Wang
Journal of Applied Statistics, 2021, vol. 48, issue 8, 1429-1441
Abstract:
In this paper, we discuss the inference problem about the Box-Cox transformation model when one faces left-truncated and right-censored data, which often occur in studies, for example, involving the cross-sectional sampling scheme. It is well-known that the Box-Cox transformation model includes many commonly used models as special cases such as the proportional hazards model and the additive hazards model. For inference, a Bayesian estimation approach is proposed and in the method, the piecewise function is used to approximate the baseline hazards function. Also the conditional marginal prior, whose marginal part is free of any constraints, is employed to deal with many computational challenges caused by the constraints on the parameters, and a MCMC sampling procedure is developed. A simulation study is conducted to assess the finite sample performance of the proposed method and indicates that it works well for practical situations. We apply the approach to a set of data arising from a retirement center.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1784854 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:8:p:1429-1441
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1784854
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().