EconPapers    
Economics at your fingertips  
 

Maximum likelihood estimation for the proportional odds model with mixed interval-censored failure time data

Liang Zhu, Xingwei Tong, Dingjiao Cai, Yimei Li, Ryan Sun, Deo K. Srivastava and Melissa M. Hudson

Journal of Applied Statistics, 2021, vol. 48, issue 8, 1496-1512

Abstract: This article discusses regression analysis of mixed interval-censored failure time data. Such data frequently occur across a variety of settings, including clinical trials, epidemiologic investigations, and many other biomedical studies with a follow-up component. For example, mixed failure times are commonly found in the two largest studies of long-term survivorship after childhood cancer, the datasets that motivated this work. However, most existing methods for failure time data consider only right-censored or only interval-censored failure times, not the more general case where times may be mixed. Additionally, among regression models developed for mixed interval-censored failure times, the proportional hazards formulation is generally assumed. It is well-known that the proportional hazards model may be inappropriate in certain situations, and alternatives are needed to analyze mixed failure time data in such cases. To fill this need, we develop a maximum likelihood estimation procedure for the proportional odds regression model with mixed interval-censored data. We show that the resulting estimators are consistent and asymptotically Gaussian. An extensive simulation study is performed to assess the finite-sample properties of the method, and this investigation indicates that the proposed method works well for many practical situations. We then apply our approach to examine the impact of age at cranial radiation therapy on risk of growth hormone deficiency in long-term survivors of childhood cancer.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1789077 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:48:y:2021:i:8:p:1496-1512

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2020.1789077

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:48:y:2021:i:8:p:1496-1512