EconPapers    
Economics at your fingertips  
 

Detection of outliers in high-dimensional data using nu-support vector regression

Abdullah Mohammed Rashid, Habshah Midi, Waleed Dhhan and Jayanthi Arasan

Journal of Applied Statistics, 2022, vol. 49, issue 10, 2550-2569

Abstract: Support Vector Regression (SVR) is gaining in popularity in the detection of outliers and classification problems in high-dimensional data (HDD) as this technique does not require the data to be of full rank. In real application, most of the data are of high dimensional. Classification of high-dimensional data is needed in applied sciences, in particular, as it is important to discriminate cancerous cells from non-cancerous cells. It is also imperative that outliers are identified before constructing a model on the relationship between the dependent and independent variables to avoid misleading interpretations about the fitting of a model. The standard SVR and the μ-ε-SVR are able to detect outliers; however, they are computationally expensive. The fixed parameters support vector regression (FP-ε-SVR) was put forward to remedy this issue. However, the FP-ε-SVR using ε-SVR is not very successful in identifying outliers. In this article, we propose an alternative method to detect outliers i.e. by employing nu-SVR. The merit of our proposed method is confirmed by three real examples and the Monte Carlo simulation. The results show that our proposed nu-SVR method is very successful in identifying outliers under a variety of situations, and with less computational running time.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1911965 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:10:p:2550-2569

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2021.1911965

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:49:y:2022:i:10:p:2550-2569