Semiparametric inference for the scale-mixture of normal partial linear regression model with censored data
Mehrdad Naderi,
Elham Mirfarah,
Matthew Bernhardt and
Ding-Geng Chen
Journal of Applied Statistics, 2022, vol. 49, issue 12, 3022-3043
Abstract:
In the censored data exploration, the classical linear regression model which assumes normally distributed random errors is perhaps one of the commonly used frameworks. However, practical studies have often criticized the classical linear regression model because of its sensitivity to departure from the normality and partial nonlinearity. This paper proposes to solve these potential issues simultaneously in the context of the partial linear regression model by assuming that the random errors follow a scale-mixture of normal (SMN) family of distributions. The postulated method allows us to model data with great flexibility, accommodating heavy tails and outliers. By implementing the B-spline approximation and using the convenient hierarchical representation of the SMN distributions, a computationally analytical EM-type algorithm is developed for obtaining maximum likelihood (ML) parameter estimates. Various simulation studies are conducted to investigate the finite sample properties, as well as the robustness of the model in dealing with the heavy tails distributed datasets. Real-world data examples are finally analyzed for illustrating the usefulness of the proposed methodology.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1931821 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:12:p:3022-3043
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2021.1931821
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().