EconPapers    
Economics at your fingertips  
 

Wavelet analysis of variance box plot

Jeffrey Williams, Raymond R. Hill, Joseph J. Pignatiello Jr. and Eric Chicken

Journal of Applied Statistics, 2022, vol. 49, issue 14, 3536-3563

Abstract: Functional box plots satisfy two needs; visualization of functional data, and the calculation of important box plot statistics. Data visualization illuminates key characteristics of functional sets missed by statistical tests and summary statistics. The calculation of box plot statistics for functional sets permits a novel comparison more suited to functional data. The functional box plot uses a depth method to visualize and rank smooth functional curves in terms of a mean, box, whiskers, and outliers. The functional box plot improves upon other classic functional data analysis tools such as functional principal components and discriminant analysis for outlier detection. This research adds wavelet analysis as a generating mechanism along with depth for functional box plots to visualize functional data and calculate relevant statistics. The wavelet analysis of variance box plot tool gives competitive error rates in Gaussian test cases with magnitude outliers, and outperforms the functional box plot, for Gaussian test cases with shape outliers. Further, we show wavelet analysis is well suited at approximating irregular and noisy functional data and show the enhanced capability of WANOVA box plots to classify shape outliers which follow a different pattern than other functional data for both simulated and real data instances.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1951685 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:14:p:3536-3563

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2021.1951685

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:49:y:2022:i:14:p:3536-3563