Robust and efficient estimation of GARCH models based on Hellinger distance
Qiang Zhao,
Liang Chen and
Jingjing Wu
Journal of Applied Statistics, 2022, vol. 49, issue 15, 3976-4002
Abstract:
It is well known that financial data frequently contain outlying observations. Almost all methods and techniques used to estimate GARCH models are likelihood-based and thus generally non-robust against outliers. Minimum distance method, as an important tool for statistical inferences and a competitive alternative for achieving robustness, has surprisingly not been well explored for GARCH models. In this paper, we proposed a minimum Hellinger distance estimator (MHDE) and a minimum profile Hellinger distance estimator (MPHDE), depending on whether the innovation distribution is specified or not, for estimating the parameters in GARCH models. The construction and investigation of the two estimators are quite involved due to the non-i.i.d. nature of data. We proved that the MHDE is a consistent estimator and derived its bias in explicit expression. For both of the proposed estimators, we demonstrated their finite-sample performance through simulation studies and compared with the well-established methods including MLE, Gaussian Quasi-MLE, Non-Gaussian Quasi-MLE and Least Absolute Deviation estimator. Our numerical results showed that MHDE and MPHDE have much better performance than MLE-based methods when data are contaminated while simultaneously they are very competitive when data is clean, which testified to the robustness and efficiency of the two proposed MHD-type estimations.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1970120 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:15:p:3976-4002
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2021.1970120
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().