EconPapers    
Economics at your fingertips  
 

Conservative confidence intervals on multiple correlation coefficient for high-dimensional elliptical data using random projection methodology

Dariush Najarzadeh

Journal of Applied Statistics, 2022, vol. 49, issue 1, 64-85

Abstract: So called multiple correlation coefficient (MCC) is a measure of linear relationship between a given variable and set of covariates. In the multiple correlation and regression analysis, it is common practice to construct a confidence interval for the population MCC. In high-dimensional data settings, by which the data dimension p is much larger than the sample size n, due to the singularity of the sample covariance matrix, the classical confidence intervals for the MCC are no longer useable. For high-dimensional elliptical data, some (conservative) confidence intervals for the population MCC are presented using the random projection methodology. To evaluate and compare the performance of the proposed confidence intervals, some simulations are conducted in terms of the coverage probability and average interval length. Experimental validation of the proposed intervals is carried out on two real gene expression datasets.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1796937 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:1:p:64-85

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2020.1796937

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:49:y:2022:i:1:p:64-85