Kalman filtering with censored measurements
Kostas Loumponias and
George Tsaklidis
Journal of Applied Statistics, 2022, vol. 49, issue 2, 317-335
Abstract:
This paper concerns Kalman filtering when the measurements of the process are censored. The censored measurements are addressed by the Tobit model of Type I and are one-dimensional with two censoring limits, while the (hidden) state vectors are multidimensional. For this model, Bayesian estimates for the state vectors are provided through a recursive algorithm of Kalman filtering type. Experiments are presented to illustrate the effectiveness and applicability of the algorithm. The experiments show that the proposed method outperforms other filtering methodologies in minimizing the computational cost as well as the overall Root Mean Square Error (RMSE) for synthetic and real data sets.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1810645 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:2:p:317-335
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1810645
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().