Exponentiated Teissier distribution with increasing, decreasing and bathtub hazard functions
Vikas Kumar Sharma,
Sudhanshu V. Singh and
Komal Shekhawat
Journal of Applied Statistics, 2022, vol. 49, issue 2, 371-393
Abstract:
This article introduces a two-parameter exponentiated Teissier distribution. It is the main advantage of the distribution to have increasing, decreasing and bathtub shapes for its hazard rate function. The expressions of the ordinary moments, identifiability, quantiles, moments of order statistics, mean residual life function and entropy measure are derived. The skewness and kurtosis of the distribution are explored using the quantiles. In order to study two independent random variables, stress–strength reliability and stochastic orderings are discussed. Estimators based on likelihood, least squares, weighted least squares and product spacings are constructed for estimating the unknown parameters of the distribution. An algorithm is presented for random sample generation from the distribution. Simulation experiments are conducted to compare the performances of the considered estimators of the parameters and percentiles. Three sets of real data are fitted by using the proposed distribution over the competing distributions.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1813694 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:2:p:371-393
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1813694
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().