Statistical modeling of computer malware propagation dynamics in cyberspace
Zijian Fang,
Peng Zhao,
Maochao Xu,
Shouhuai Xu,
Taizhong Hu and
Xing Fang
Journal of Applied Statistics, 2022, vol. 49, issue 4, 858-883
Abstract:
Modeling cyber threats, such as the computer malicious software (malware) propagation dynamics in cyberspace, is an important research problem because models can deepen our understanding of dynamical cyber threats. In this paper, we study the statistical modeling of the macro-level evolution of dynamical cyber attacks. Specifically, we propose a Bayesian structural time series approach for modeling the computer malware propagation dynamics in cyberspace. Our model not only possesses the parsimony property (i.e. using few model parameters) but also can provide the predictive distribution of the dynamics by accommodating uncertainty. Our simulation study shows that the proposed model can fit and predict the computer malware propagation dynamics accurately, without requiring to know the information about the underlying attack-defense interaction mechanism and the underlying network topology. We use the model to study the propagation of two particular kinds of computer malware, namely the Conficker and Code Red worms, and show that our model has very satisfactory fitting and prediction accuracies.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1845621 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:4:p:858-883
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1845621
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().