A review of tests for exponentiality with Monte Carlo comparisons
Everestus O. Ossai,
Mbanefo S. Madukaife and
Abimibola V. Oladugba
Journal of Applied Statistics, 2022, vol. 49, issue 5, 1277-1304
Abstract:
In this paper, 91 different tests for exponentiality are reviewed. Some of the tests are universally consistent while others are against some special classes of life distributions. Power performances of 40 of these different tests for exponentiality of datasets are compared through extensive Monte Carlo simulations. The comparisons are conducted for different sample sizes of 10, 25, 50 and 100 for different groups of distributions according to the shape of their hazard functions at 5 percent level of significance. Also, the techniques are applied to two real-world datasets and a measure of power is employed for the comparison of the tests. The results show that some tests which are very good under one group of alternative distributions are not so under another group. Also, some tests maintained relatively high power over all the groups of alternative distributions studied while some others maintained poor power performances over all the groups of alternative distributions. Again, the result obtained from real-world datasets agree completely with those of the simulation studies.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1854202 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:5:p:1277-1304
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1854202
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().