EconPapers    
Economics at your fingertips  
 

Directional monitoring and diagnosis for covariance matrices

Hongying Jing, Jian Li and Kaizong Bai

Journal of Applied Statistics, 2022, vol. 49, issue 6, 1449-1464

Abstract: Statistical surveillance for covariance matrices has attracted increasing attention recently. Many approaches have been developed for monitoring general shifts that are arbitrary deviations, as well as sparse shifts occurring in only a few elements. This paper considers directional shifts that occur in only one independent parameter, which is common if the process is relatively stable. A directional covariance matrix control chart is proposed, which fully exploits directional shift information and borrows the strong power of likelihood ratio test. Therefore, this chart provides a powerful tool for monitoring covariance matrices. In addition, the proposed chart does not require specifying the regularisation parameter, and it enjoys a concise quadratic form, thereby easy to implement. Furthermore, this chart naturally leads to a diagnostic prescription for identifying the shifting element in the covariance matrix. Simulation results have demonstrated the efficiency of the suggested control chart and its accompanying diagnostic scheme.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1867830 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:6:p:1449-1464

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2020.1867830

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:49:y:2022:i:6:p:1449-1464