Bayesian selector of adaptive bandwidth for multivariate gamma kernel estimator on [0,∞ )d
Sobom M. Somé and
Célestin C. Kokonendji
Journal of Applied Statistics, 2022, vol. 49, issue 7, 1692-1713
Abstract:
Bayesian bandwidth selections in multivariate associated kernel estimation of probability density functions are known to improve classical methods such as cross-validation techniques in terms of execution time and smoothing quality. The paper focuses on a basic multivariate gamma kernel which is appropriated to estimate densities with support $ [0,\infty )^d $ [0,∞)d. For this purpose, we consider a Bayesian adaptive estimation of the bandwidths vector under the usual quadratic loss function. The exact expression of the posterior distribution and the vector of bandwidths are obtained. Simulations studies highlight the excellent performance of the proposed approach, comparing to the global cross-validation bandwidth selection, and under integrated squared errors. Two bivariate and trivariate applications to the Old Faithful geyser data and new ones on drinking water pumps in the Sahel, respectively, are made.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2021.1881456 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:7:p:1692-1713
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2021.1881456
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().