Multipopulation mortality modelling and forecasting: the weighted multivariate functional principal component approaches
Ka Kin Lam and
Bo Wang
Journal of Applied Statistics, 2023, vol. 50, issue 15, 3177-3198
Abstract:
Human mortality patterns and trajectories in closely related populations are likely linked together and share similarities. It is always desirable to model them simultaneously while taking their heterogeneity into account. This article introduces two new models for joint mortality modelling and forecasting multiple subpopulations using the multivariate functional principal component analysis techniques. The first model extends the independent functional data model to a multipopulation modelling setting. In the second one, we propose a novel multivariate functional principal component method for coherent modelling. Its design primarily fulfils the idea that when several subpopulation groups have similar socio-economic conditions or common biological characteristics such close connections are expected to evolve in a non-diverging fashion. We demonstrate the proposed methods by using sex-specific mortality data. Their forecast performances are further compared with several existing models, including the independent functional data model and the Product-Ratio model, through comparisons with mortality data of ten developed countries. The numerical examples show that the first proposed model maintains a comparable forecast ability with the existing methods. In contrast, the second proposed model outperforms the first model as well as the existing models in terms of forecast accuracy.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2022.2104228 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:50:y:2023:i:15:p:3177-3198
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2022.2104228
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().