EconPapers    
Economics at your fingertips  
 

Inference of multicomponent stress-strength reliability following Topp-Leone distribution using progressively censored data

Shubham Saini, Sachin Tomer and Renu Garg

Journal of Applied Statistics, 2023, vol. 50, issue 7, 1538-1567

Abstract: In this paper, the inference of multicomponent stress-strength reliability has been derived using progressively censored samples from Topp-Leone distribution. Both stress and strength variables are assumed to follow Topp-Leone distributions with different shape parameters. The maximum likelihood estimate along with the asymptotic confidence interval are developed. Boot-p and Boot-t confidence intervals are also constructed. The Bayes estimates under generalized entropy loss function based on gamma priors using Lindley's, Tierney-Kadane's approximation and Markov chain Monte Carlo methods are derived. A simulation study is considered to check the performance of various estimation methods and different censoring schemes. A real data study shows the applicability of the proposed estimation methods.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2022.2032621 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:50:y:2023:i:7:p:1538-1567

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2022.2032621

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:50:y:2023:i:7:p:1538-1567