EconPapers    
Economics at your fingertips  
 

A clustering approach to integrative analyses of multiomic cancer data

Dongyan Yan and Subharup Guha

Journal of Applied Statistics, 2025, vol. 52, issue 8, 1539-1560

Abstract: Rapid technological advances have allowed for molecular profiling across multiple omics domains for clinical decision-making in many diseases, especially cancer. However, as tumor development and progression are biological processes involving composite genomic aberrations, key challenges are to effectively assimilate information from these domains to identify genomic signatures and druggable biological entities, develop accurate risk prediction profiles for future patients, and identify novel patient subgroups for tailored therapy and monitoring. We propose integrative frameworks for high-dimensional multiple-domain cancer data. These Bayesian mixture model-based approaches coherently incorporate dependence within and between domains to accurately detect tumor subtypes, thus providing a catalog of genomic aberrations associated with cancer taxonomy. The flexible and scalable Bayesian nonparametric strategy performs simultaneous bidirectional clustering of the tumor samples and genomic probes to achieve dimension reduction. We describe an efficient variable selection procedure that can identify relevant genomic aberrations and potentially reveal underlying drivers of disease. Although the work is motivated by lung cancer datasets, the proposed methods are broadly applicable in a variety of contexts involving high-dimensional data. The success of the methodology is demonstrated using artificial data and lung cancer omics profiles publicly available from The Cancer Genome Atlas.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2024.2431742 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:52:y:2025:i:8:p:1539-1560

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2024.2431742

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-07-02
Handle: RePEc:taf:japsta:v:52:y:2025:i:8:p:1539-1560