EconPapers    
Economics at your fingertips  
 

Spatio-Spectral Mixed-Effects Model for Functional Magnetic Resonance Imaging Data

Hakmook Kang, Hernando Ombao, Crystal Linkletter, Nicole Long and David Badre

Journal of the American Statistical Association, 2012, vol. 107, issue 498, 568-577

Abstract: The goal of this article is to model cognitive control related activation among predefined regions of interest (ROIs) of the human brain while properly adjusting for the underlying spatio-temporal correlations. Standard approaches to fMRI analysis do not simultaneously take into account both the spatial and temporal correlations that are prevalent in fMRI data. This is primarily due to the computational complexity of estimating the spatio-temporal covariance matrix. More specifically, they do not take into account multiscale spatial correlation (between-ROIs and within-ROI). To address these limitations, we propose a spatio-spectral mixed-effects model. Working in the spectral domain simplifies the temporal covariance structure because the Fourier coefficients are approximately uncorrelated across frequencies. Additionally, by incorporating voxel-specific and ROI-specific random effects, the model is able to capture the multiscale spatial covariance structure: distance-dependent local correlation (within an ROI), and distance-independent global correlation (between-ROIs). Building on existing theory on linear mixed-effects models to conduct estimation and inference, we applied our model to fMRI data to study activation in prespecified ROIs in the prefontal cortex and estimate the correlation structure in the network. Simulation studies demonstrate that ignoring the multiscale correlation leads to higher false positive error rates.

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.664503 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:498:p:568-577

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2012.664503

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:568-577