Nonparametric Estimation of Conditional Distributions and Rank-Tracking Probabilities With Time-Varying Transformation Models in Longitudinal Studies
Colin O. Wu and
Xin Tian
Journal of the American Statistical Association, 2013, vol. 108, issue 503, 971-982
Abstract:
An objective of longitudinal analysis is to estimate the conditional distributions of an outcome variable through a regression model. The approaches based on modeling the conditional means are not appropriate for this task when the conditional distributions are skewed or cannot be approximated by a normal distribution through a known transformation. We study a class of time-varying transformation models and a two-step smoothing method for the estimation of the conditional distribution functions. Based on our models, we propose a rank-tracking probability and a rank-tracking probability ratio to measure the strength of tracking ability of an outcome variable at two different time points. Our models and estimation method can be applied to a wide range of scientific objectives that cannot be evaluated by the conditional mean-based models. We derive the asymptotic properties for the two-step local polynomial estimators of the conditional distribution functions. Finite sample properties of our procedures are investigated through a simulation study. Application of our models and estimation method is demonstrated through an epidemiological study of childhood growth and blood pressure. Supplementary materials for this article are available online.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.808949 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:503:p:971-982
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2013.808949
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().