A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes
Daniel Cervone,
Alex D’Amour,
Luke Bornn and
Kirk Goldsberry
Journal of the American Statistical Association, 2016, vol. 111, issue 514, 585-599
Abstract:
Basketball games evolve continuously in space and time as players constantly interact with their teammates, the opposing team, and the ball. However, current analyses of basketball outcomes rely on discretized summaries of the game that reduce such interactions to tallies of points, assists, and similar events. In this article, we propose a framework for using optical player tracking data to estimate, in real time, the expected number of points obtained by the end of a possession. This quantity, called expected possession value (EPV), derives from a stochastic process model for the evolution of a basketball possession. We model this process at multiple levels of resolution, differentiating between continuous, infinitesimal movements of players, and discrete events such as shot attempts and turnovers. Transition kernels are estimated using hierarchical spatiotemporal models that share information across players while remaining computationally tractable on very large data sets. In addition to estimating EPV, these models reveal novel insights on players’ decision-making tendencies as a function of their spatial strategy. In the supplementary material, we provide a data sample and R code for further exploration of our model and its results.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1141685 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:514:p:585-599
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1141685
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().