EconPapers    
Economics at your fingertips  
 

Active Clinical Trials for Personalized Medicine

Stanislav Minsker, Ying-Qi Zhao and Guang Cheng

Journal of the American Statistical Association, 2016, vol. 111, issue 514, 875-887

Abstract: Individualized treatment rules (ITRs) tailor treatments according to individual patient characteristics. They can significantly improve patient care and are thus becoming increasingly popular. The data collected during randomized clinical trials are often used to estimate the optimal ITRs. However, these trials are generally expensive to run, and, moreover, they are not designed to efficiently estimate ITRs. In this article, we propose a cost-effective estimation method from an active learning perspective. In particular, our method recruits only the “most informative” patients (in terms of learning the optimal ITRs) from an ongoing clinical trial. Simulation studies and real-data examples show that our active clinical trial method significantly improves on competing methods. We derive risk bounds and show that they support these observed empirical advantages. Supplementary materials for this article are available online.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1066682 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:514:p:875-887

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2015.1066682

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:875-887