EconPapers    
Economics at your fingertips  
 

A General Framework for Estimation and Inference From Clusters of Features

Stephen Reid, Jonathan Taylor and Robert Tibshirani

Journal of the American Statistical Association, 2018, vol. 113, issue 521, 280-293

Abstract: Applied statistical problems often come with prespecified groupings to predictors. It is natural to test for the presence of simultaneous group-wide signal for groups in isolation, or for multiple groups together. Current tests for the presence of such signals include the classical F-test or a t-test on unsupervised group prototypes (either group centroids or first principal components). In this article, we propose test statistics that aim for power improvements over these classical approaches. In particular, we first create group prototypes, with reference to the response, and then test with likelihood ratio statistics incorporating only these prototypes. We propose a model, called the “prototype model,” which naturally models this two-step procedure. Furthermore, we introduce an inferential schema detailing the unique considerations for different combinations of prototype formation and univariate/multivariate testing models. The prototype model also suggests new applications to estimation and prediction. Prototype formation often relies on variable selection, which invalidates classical Gaussian test theory. We use recent advances in selective inference to account for selection in the prototyping step and retain test validity. Simulation experiments suggest that our testing procedure enjoys more power than do classical approaches. Supplementary materials for this article are available online.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1246368 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:521:p:280-293

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1246368

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:280-293