EconPapers    
Economics at your fingertips  
 

Matched Learning for Optimizing Individualized Treatment Strategies Using Electronic Health Records

Peng Wu, Donglin Zeng and Yuanjia Wang

Journal of the American Statistical Association, 2020, vol. 115, issue 529, 380-392

Abstract: Current guidelines for treatment decision making largely rely on data from randomized controlled trials (RCTs) studying average treatment effects. They may be inadequate to make individualized treatment decisions in real-world settings. Large-scale electronic health records (EHR) provide opportunities to fulfill the goals of personalized medicine and learn individualized treatment rules (ITRs) depending on patient-specific characteristics from real-world patient data. In this work, we tackle challenges with EHRs and propose a machine learning approach based on matching (M-learning) to estimate optimal ITRs from EHRs. This new learning method performs matching instead of inverse probability weighting as commonly used in many existing methods for estimating ITRs to more accurately assess individuals’ treatment responses to alternative treatments and alleviate confounding. Matching-based value functions are proposed to compare matched pairs under a unified framework, where various types of outcomes for measuring treatment response (including continuous, ordinal, and discrete outcomes) can easily be accommodated. We establish the Fisher consistency and convergence rate of M-learning. Through extensive simulation studies, we show that M-learning outperforms existing methods when propensity scores are misspecified or when unmeasured confounders are present in certain scenarios. Lastly, we apply M-learning to estimate optimal personalized second-line treatments for type 2 diabetes patients to achieve better glycemic control or reduce major complications using EHRs from New York Presbyterian Hospital. Supplementary materials for this article are available online.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1549050 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:115:y:2020:i:529:p:380-392

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1549050

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:380-392