BAGS: A Bayesian Adaptive Group Sequential Trial Design With Subgroup-Specific Survival Comparisons
Ruitao Lin,
Peter F. Thall and
Ying Yuan
Journal of the American Statistical Association, 2021, vol. 116, issue 533, 322-334
Abstract:
A Bayesian group sequential design is proposed that performs survival comparisons within patient subgroups in randomized trials where treatment–subgroup interactions may be present. A latent subgroup membership variable is assumed to allow the design to adaptively combine homogeneous subgroups, or split heterogeneous subgroups, to improve the procedure’s within-subgroup power. If a baseline covariate related to survival is available, the design may incorporate this information to improve subgroup identification while basing the comparative test on the average hazard ratio. General guidelines are provided for calibrating prior hyperparameters and design parameters to control the overall Type I error rate and optimize performance. Simulations show that the design is robust under a wide variety of different scenarios. When two or more subgroups are truly homogeneous but differ from the other subgroups, the proposed method is substantially more powerful than tests that either ignore subgroups or conduct a separate test within each subgroup. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1837142 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:533:p:322-334
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1837142
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().