A Distributed and Integrated Method of Moments for High-Dimensional Correlated Data Analysis
Emily C. Hector and
Peter X.-K. Song
Journal of the American Statistical Association, 2021, vol. 116, issue 534, 805-818
Abstract:
This article is motivated by a regression analysis of electroencephalography (EEG) neuroimaging data with high-dimensional correlated responses with multilevel nested correlations. We develop a divide-and-conquer procedure implemented in a fully distributed and parallelized computational scheme for statistical estimation and inference of regression parameters. Despite significant efforts in the literature, the computational bottleneck associated with high-dimensional likelihoods prevents the scalability of existing methods. The proposed method addresses this challenge by dividing responses into subvectors to be analyzed separately and in parallel on a distributed platform using pairwise composite likelihood. Theoretical challenges related to combining results from dependent data are overcome in a statistically efficient way using a meta-estimator derived from Hansen’s generalized method of moments. We provide a rigorous theoretical framework for efficient estimation, inference, and goodness-of-fit tests. We develop an R package for ease of implementation. We illustrate our method’s performance with simulations and the analysis of the EEG data, and find that iron deficiency is significantly associated with two auditory recognition memory related potentials in the left parietal-occipital region of the brain. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1736082 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:534:p:805-818
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1736082
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().