EconPapers    
Economics at your fingertips  
 

Estimating and Accounting for Unobserved Covariates in High-Dimensional Correlated Data

Chris McKennan and Dan Nicolae

Journal of the American Statistical Association, 2022, vol. 117, issue 537, 225-236

Abstract: Many high-dimensional and high-throughput biological datasets have complex sample correlation structures, which include longitudinal and multiple tissue data, as well as data with multiple treatment conditions or related individuals. These data, as well as nearly all high-throughput “omic” data, are influenced by technical and biological factors unknown to the researcher, which, if unaccounted for, can severely obfuscate estimation of and inference on the effects of interest. We therefore developed CBCV and CorrConf: provably accurate and computationally efficient methods to choose the number of and estimate latent confounding factors present in high-dimensional data with correlated or nonexchangeable residuals. We demonstrate each method’s superior performance compared to other state of the art methods by analyzing simulated multi-tissue gene expression data and identifying sex-associated DNA methylation sites in a real, longitudinal twin study. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1769635 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:537:p:225-236

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1769635

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:225-236