EconPapers    
Economics at your fingertips  
 

A Mode-Jumping Algorithm for Bayesian Factor Analysis

Albert Xingyi Man and Steven Andrew Culpepper

Journal of the American Statistical Association, 2022, vol. 117, issue 537, 277-290

Abstract: Exploratory factor analysis is a dimension-reduction technique commonly used in psychology, finance, genomics, neuroscience, and economics. Advances in computational power have opened the door for fully Bayesian treatments of factor analysis. One open problem is enforcing rotational identifability of the latent factor loadings, as the loadings are not identified from the likelihood without further restrictions. Nonidentifability of the loadings can cause posterior multimodality, which can produce misleading posterior summaries. The positive-diagonal, lower-triangular (PLT) constraint is the most commonly used restriction to guarantee identifiability, in which the upper m × m submatrix of the loadings is constrained to be a lower-triangular matrix with positive-diagonal elements. The PLT constraint can fail to guarantee identifiability if the constrained submatrix is singular. Furthermore, though the PLT constraint addresses identifiability-related multimodality, it introduces additional mixing issues. We introduce a new Bayesian sampling algorithm that efficiently explores the multimodal posterior surface and addresses issues with PLT-constrained approaches. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1773833 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:537:p:277-290

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1773833

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:277-290