EconPapers    
Economics at your fingertips  
 

Covariate Adaptive False Discovery Rate Control With Applications to Omics-Wide Multiple Testing

Xianyang Zhang and Jun Chen

Journal of the American Statistical Association, 2022, vol. 117, issue 537, 411-427

Abstract: Conventional multiple testing procedures often assume hypotheses for different features are exchangeable. However, in many scientific applications, additional covariate information regarding the patterns of signals and nulls are available. In this article, we introduce an FDR control procedure in large-scale inference problem that can incorporate covariate information. We develop a fast algorithm to implement the proposed procedure and prove its asymptotic validity even when the underlying likelihood ratio model is misspecified and the p-values are weakly dependent (e.g., strong mixing). Extensive simulations are conducted to study the finite sample performance of the proposed method and we demonstrate that the new approach improves over the state-of-the-art approaches by being flexible, robust, powerful, and computationally efficient. We finally apply the method to several omics datasets arising from genomics studies with the aim to identify omics features associated with some clinical and biological phenotypes. We show that the method is overall the most powerful among competing methods, especially when the signal is sparse. The proposed covariate adaptive multiple testing procedure is implemented in the R package CAMT. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1783273 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:537:p:411-427

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1783273

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:411-427