Monte Carlo Approximation of Bayes Factors via Mixing With Surrogate Distributions
Chenguang Dai and
Jun S. Liu
Journal of the American Statistical Association, 2022, vol. 117, issue 538, 765-780
Abstract:
By mixing the target posterior distribution with a surrogate distribution, of which the normalizing constant is tractable, we propose a method for estimating the marginal likelihood using the Wang–Landau algorithm. We show that a faster convergence of the proposed method can be achieved via the momentum acceleration. Two implementation strategies are detailed: (i) facilitating global jumps between the posterior and surrogate distributions via the multiple-try Metropolis (MTM); (ii) constructing the surrogate via the variational approximation. When a surrogate is difficult to come by, we describe a new jumping mechanism for general reversible jump Markov chain Monte Carlo algorithms, which combines the MTM and a directional sampling algorithm. We illustrate the proposed methods on several statistical models, including the log-Gaussian Cox process, the Bayesian Lasso, the logistic regression, and the g-prior Bayesian variable selection. Supplementary materials for this article are available online.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1811100 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:538:p:765-780
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1811100
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().