Simultaneous Inference for Empirical Best Predictors With a Poverty Study in Small Areas
Katarzyna Reluga,
María-José Lombardía and
Stefan Sperlich
Journal of the American Statistical Association, 2023, vol. 118, issue 541, 583-595
Abstract:
Today, generalized linear mixed models (GLMM) are broadly used in many fields. However, the development of tools for performing simultaneous inference has been largely neglected in this domain. A framework for joint inference is indispensable to carry out statistically valid multiple comparisons of parameters of interest between all or several clusters. We therefore develop simultaneous confidence intervals and multiple testing procedures for empirical best predictors under GLMM. In addition, we implement our methodology to study widely employed examples of mixed models, that is, the unit-level binomial, the area-level Poisson-gamma and the area-level Poisson-lognormal mixed models. The asymptotic results are accompanied by extensive simulations. A case study on predicting poverty rates illustrates applicability and advantages of our simultaneous inference tools.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1942014 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:583-595
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1942014
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().