Overcoming Repeated Testing Schedule Bias in Estimates of Disease Prevalence
Patrick M. Schnell,
Matthew Wascher and
Grzegorz A. Rempala
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 1-13
Abstract:
During the COVID-19 pandemic, many institutions such as universities and workplaces implemented testing regimens with every member of some population tested longitudinally, and those testing positive isolated for some time. Although the primary purpose of such regimens was to suppress disease spread by identifying and isolating infectious individuals, testing results were often also used to obtain prevalence and incidence estimates. Such estimates are helpful in risk assessment and institutional planning and various estimation procedures have been implemented, ranging from simple test-positive rates to complex dynamical modeling. Unfortunately, the popular test-positive rate is a biased estimator of prevalence under many seemingly innocuous longitudinal testing regimens with isolation. We illustrate how such bias arises and identify conditions under which the test-positive rate is unbiased. Further, we identify weaker conditions under which prevalence is identifiable and propose a new estimator of prevalence under longitudinal testing. We evaluate the proposed estimation procedure via simulation study and illustrate its use on a dataset derived by anonymizing testing data from The Ohio State University. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2238943 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:1-13
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2238943
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().