Operator-Induced Structural Variable Selection for Identifying Materials Genes
Shengbin Ye,
Thomas P. Senftle and
Meng Li
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 81-94
Abstract:
In the emerging field of materials informatics, a fundamental task is to identify physicochemically meaningful descriptors, or materials genes, which are engineered from primary features and a set of elementary algebraic operators through compositions. Standard practice directly analyzes the high-dimensional candidate predictor space in a linear model; statistical analyses are then substantially hampered by the daunting challenge posed by the astronomically large number of correlated predictors with limited sample size. We formulate this problem as variable selection with operator-induced structure (OIS) and propose a new method to achieve unconventional dimension reduction by using the geometry embedded in OIS. Although the model remains linear, we iterate nonparametric variable selection for effective dimension reduction. This enables variable selection based on ab initio primary features, leading to a method that is orders of magnitude faster than existing methods, with improved accuracy. To select the nonparametric module, we discuss a desired performance criterion that is uniquely induced by variable selection with OIS; in particular, we propose to employ a Bayesian Additive Regression Trees (BART)-based variable selection method. Numerical studies show superiority of the proposed method, which continues to exhibit robust performance when the input dimension is out of reach of existing methods. Our analysis of single-atom catalysis identifies physical descriptors that explain the binding energy of metal-support pairs with high explanatory power, leading to interpretable insights to guide the prevention of a notorious problem called sintering and aid catalysis design. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2294527 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:81-94
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2294527
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().