EconPapers    
Economics at your fingertips  
 

Statistical and Computational Efficiency for Smooth Tensor Estimation with Unknown Permutations

Chanwoo Lee and Miaoyan Wang

Journal of the American Statistical Association, 2025, vol. 120, issue 551, 1477-1490

Abstract: We consider the problem of structured tensor denoising in the presence of unknown permutations. Such data problems arise commonly in recommendation systems, neuroimaging, community detection, and multiway comparison applications. Here, we develop a general family of smooth tensor models up to arbitrary index permutations; the model incorporates the popular tensor block models and Lipschitz hypergraphon models as special cases. We show that a constrained least-squares estimator in the block-wise polynomial family achieves the minimax error bound. A phase transition phenomenon is revealed with respect to the smoothness threshold needed for optimal recovery. In particular, we find that a polynomial of degree up to (m−2)(m+1)/2 is sufficient for accurate recovery of order-m tensors, whereas higher degrees exhibit no further benefits. This phenomenon reveals the intrinsic distinction for smooth tensor estimation problems with and without unknown permutations. Furthermore, we provide an efficient polynomial-time Borda count algorithm that provably achieves the optimal rate under monotonicity assumptions. The efficacy of our procedure is demonstrated through both simulations and Chicago crime data analysis. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2419114 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:551:p:1477-1490

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2024.2419114

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-11-05
Handle: RePEc:taf:jnlasa:v:120:y:2025:i:551:p:1477-1490