A new real-time suboptimum filtering and prediction scheme for general nonlinear discrete dynamic systems with Gaussian or non-Gaussian noise
Kerim Demirbaş
International Journal of Systems Science, 2011, vol. 42, issue 10, 1789-1799
Abstract:
A new suboptimum state filtering and prediction scheme is proposed for nonlinear discrete dynamic systems with Gaussian or non-Gaussian disturbance and observation noises. This scheme is an online estimation scheme for real-time applications. Furthermore, this scheme is very suitable for state estimation under either constraints imposed on estimates or missing observations. State and observation models can be any nonlinear functions of the states, disturbance and observation noises as long as noise samples are independent, and the density functions of noise samples and conditional density functions of the observations given the states are available. State models are used to calculate transition probabilities from gates to gates. If these transition probabilities are known or can be estimated, state models are not needed for estimation. The proposed scheme (PR) is based upon state quantisation and multiple hypothesis testing. Monte Carlo simulations have shown that the performance of the PR, sampling importance resampling (SIR) particle filter and extended Kalman (EK) filter are all model-dependent, and that the performance of the PR is better than both the SIR particle filter and EK filter for some nonlinear models, simulation results of three of which are given in this article.
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721003653682 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:42:y:2011:i:10:p:1789-1799
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721003653682
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().