EconPapers    
Economics at your fingertips  
 

Inductive linkage identification on building blocks of different sizes and types

Ying-ping Chen, Chung-Yao Chuang and Yuan-Wei Huang

International Journal of Systems Science, 2012, vol. 43, issue 12, 2202-2213

Abstract: The goal of linkage identification is to obtain the dependencies among decision variables. Such information or knowledge can be applied to design crossover operators and/or the encoding schemes in genetic and evolutionary methods. Thus, promising sub-solutions to the problem will be disrupted less likely, and successful convergence may be achieved more likely. To obtain linkage information, a linkage identification technique, called Inductive Linkage Identification (ILI), was proposed recently. ILI was established upon the mechanism of perturbation and the idea of decision tree learning. By constructing a decision tree according to decision variables and fitness difference values, the interdependent variables will be determined by the adopted decision tree learning algorithm. In this article, we aim to acquire a better understanding on the characteristics of ILI, especially its behaviour under problems composed of different-sized and different-type building blocks (BBs) which are not overlapped. Experiments showed that ILI can efficiently handle BBs of different sizes and is insensitive to BB types. Our experimental observations indicate the flexibility and the applicability of ILI on various elementary BB types that are commonly adopted in related experiments.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2011.566639 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:43:y:2012:i:12:p:2202-2213

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2011.566639

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:43:y:2012:i:12:p:2202-2213