Consensus control of multi-agent systems with missing data in actuators and Markovian communication failure
Yuebing Hu,
James Lam and
Jinling Liang
International Journal of Systems Science, 2013, vol. 44, issue 10, 1867-1878
Abstract:
This article investigates the consensus problem of multi-agent systems (MASs) with imperfect communication both in channels and in actuators. The data transmission among agents may fail due to limited communication capacity, and the actuators may fail to receive information owing to noisy environment. We use a Markov chain approach to characterise the occurrence of the two types missing data in a unified framework. A sufficient consensus condition is first obtained in terms of linear matrix inequalities. Then, based on this condition, a novel controller design method is further developed such that the MAS with imperfect communication reaches mean-square consensus. It is shown that the consensus problem for MASs with switching topology can be regarded as a special case of the problem considered in this article, and the related theoretical results are presented as well. Numerical examples are provided to illustrate the effectiveness of the proposed approach.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2012.670298 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:44:y:2013:i:10:p:1867-1878
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2012.670298
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().