Stability analysis and controller design of interval type-2 fuzzy systems with time delay
Long Sheng and
Xiaoyu Ma
International Journal of Systems Science, 2014, vol. 45, issue 5, 977-993
Abstract:
The type-2 fuzzy models can handle the system uncertainties directly based on the type-2 fuzzy sets. In this paper, the Takagi–Sugeno fuzzy model approach is extended to the stability analysis and controller design for interval type-2 (IT2) fuzzy systems with time-varying delay. Delay-dependent robust stability criteria are developed in terms of linear matrix inequalities by using the improvement technique of free-weighting matrices. Less conservative results are obtained by considering the information contained in the footprint of uncertainty. Finally, two simulation examples are presented to illustrate the effectiveness of the theoretical results. One is provided to show the merits of the proposed method, the other based on the continuous stirred tank reactor model is given to illustrate the design processes of IT2 fuzzy controller for a nonlinear system with parameter uncertainties.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2012.743056 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:45:y:2014:i:5:p:977-993
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2012.743056
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().