Review of rational (total) nonlinear dynamic system modelling, identification, and control
Quanmin Zhu,
Yongji Wang,
Dongya Zhao,
Shaoyuan Li and
Stephen A. Billings
International Journal of Systems Science, 2015, vol. 46, issue 12, 2122-2133
Abstract:
This paper is a summary of the research development in the rational (total) nonlinear dynamic modelling over the last two decades. Total nonlinear dynamic systems are defined as those where the model parameters and input (controller outputs) are subject to nonlinear to the output. Previously, this class of models has been known as rational models, which is a model that can be considered to belong to the nonlinear autoregressive moving average with exogenous input (NARMAX) model subset and is an extension of the well-known polynomial NARMAX model. The justification for using the rational model is that it provides a very concise and parsimonious representation for highly complex nonlinear dynamic systems and has excellent interpolatory and extrapolatory properties. However, model identification and controller design are much more challenging compared to the polynomial models. This has been a new and fascinating research trend in the area of mathematical modelling, control, and applications, but still within a limited research community. This paper brings several representative algorithms together, developed by the authors and their colleagues, to form an easily referenced archive for promotion of the awareness, tutorial, applications, and even further research expansion.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.849774 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:46:y:2015:i:12:p:2122-2133
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2013.849774
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().