Hybrid multi-objective optimisation for concurrent activities consolidating two docked spacecraft
Jin Zhang,
Guo-jin Tang and
Ya-zhong Luo
International Journal of Systems Science, 2015, vol. 46, issue 16, 2905-2917
Abstract:
Rendezvous and docking (RVD) is a key technology for performing complicated space missions. After an RVD process, several activities are executed to consolidate two docked spacecraft into a spacecraft complex, and this task phase is referred to as a spacecraft consolidation mission. It can save the mission time to execute these activities in parallel, but a high degree of parallelism could result in a disordered execution profile and many violations of precedence constraints. To solve this contradiction, a hybrid multi-objective optimisation approach is proposed. The precedence requirements within each activity are satisfied using an encoding and scheduling process, while the precedence requirements between different activities are treated by adding release time variables. A compact-execution index is designed to express the preference of an orderly and compact execution profile. Furthermore, a multi-objective hybrid-encoding genetic algorithm is employed to find optimal solutions. Finally, the proposed approach is demonstrated for a numerical example. The results show that optimal solutions satisfying precedence requirements both within each activity and between different activities are successfully obtained, and the trade-off between saving mission time and obtaining an orderly and compact execution profile can be effectively made. The performance of the proposed method is validated by comparison with two other multi-objective genetic algorithms.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2014.880198 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:46:y:2015:i:16:p:2905-2917
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2014.880198
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().